StreamingT2V 是一种先进的自回归技术,可以创建具有丰富动态运动的长视频,没有任何停滞。它确保视频中的时间一致性,与描述性文本紧密对齐,并保持高帧级图像质量。
TextCraftor是一种创新的文本编码器微调技术,能够显著提升文本到图像生成模型的性能。通过奖励函数优化,它改善了图像质量与文本对齐,无需额外数据集。
该论文提出了对图像生成模型进行评估的新指,提出了 Frechet Inception Distance (FID) 指标存在的问题,并提出了一种新的评估指标 CMMD。通过大量实验证明,FID 指标对文本到图像模型的评估可能不可靠,而 CMMD 指标可以更可靠地评估图像质量。
UniFL是一个项目,旨在提升生成模型质量和加速推理速度。它通过感知反馈学习、解耦反馈学习和对抗性反馈学习三个关键组件,有效解决了当前扩散模型存在的图像质量、美学吸引力和推理速度等问题。经过实验验证和用户研究,UniFL在多个扩散模型上展现出显著的性能提升和强大的泛化能力。