HyFluid是一种从稀疏多视角视频中推断流体密度和速度场的神经方法。与现有的神经动力学重建方法不同,HyFluid能够准确估计密度并揭示底层速度,克服了流体速度的固有视觉模糊性。该方法通过引入一组基于物理的损失来实现推断出物理上合理的速度场,同时处理流体速度的湍流性质,设计了一个混合神经速度表示,包括捕捉大部分无旋能量的基础神经速度场和模拟剩余湍流速度的涡粒子速度。该方法可用于各种围绕3D不可压缩流的学习和重建应用,包括流体再模拟和编辑、未来预测以及神经动态场景合成。