Evaluating Text-to-Visual Generation with Image-to-Text Generation提出了一种新的评估指标VQAScore,能够更好地评估复杂的文本到视觉生成效果,并引入了GenAI-Bench基准测试集。VQAScore基于CLIP-FlanT5模型,能够在文本到图像/视频/3D生成评估中取得最佳性能,是一种强大的替代CLIPScore的方案。GenAI-Bench则提供了包含丰富组合语义的实际场景测试文本,可用于全面评估生成模型的性能。
Apollo项目由FreedomIntelligence组织维护,旨在通过提供多语言医学领域的大型语言模型(LLMs)来民主化医疗AI,覆盖6亿人。该项目包括模型、数据集、基准测试和相关代码。
Benchmark Medical RAG是一个专注于医疗领域的检索式问答(Retrieval-Augmented Generation)基准测试平台。它提供了一系列的数据集和评估工具,旨在推动医疗信息检索和生成模型的研究。
MMStar是一个旨在评估大型视觉语言模型多模态能力的基准测试集。它包含1500个精心挑选的视觉语言样本,涵盖6个核心能力和18个细分维度。每个样本都经过了人工审查,确保具有视觉依赖性,最小化数据泄露,并需要高级多模态能力来解决。除了传统的准确性指标外,MMStar还提出了两个新的指标来衡量数据泄露和多模态训练的实际性能增益。研究人员可以使用MMStar评估视觉语言模型在多个任务上的多模态能力,并借助新的指标发现模型中存在的潜在问题。