Depth Anything是一个高度实用的解决方案,用于稳健的单目深度估计。我们旨在构建一个简单而强大的基础模型,处理任何情况下的任何图像,而不追求新颖的技术模块。为此,我们通过设计数据引擎来扩大数据集,收集并自动注释大规模未标记数据(约62M),从而显着扩大数据覆盖范围,从而能够减少泛化误差。我们研究了两种简单而有效的策略,使数据扩展变得有前途。首先,通过利用数据增强工具创建更具挑战性的优化目标。它迫使模型积极寻求额外的视觉知识并获得强大的表示。其次,开发了辅助监督,以强制模型从预训练编码器中继承丰富的语义先验。我们对其零-shot能力进行了广泛评估,包括六个公共数据集和随机拍摄的照片。它展现出令人印象深刻的泛化能力。此外,通过使用来自NYUv2和KITTI的度量深度信息对其进行微调,我们建立了新的SOTAs。我们更好的深度模型也导致更好的深度条件ControlNet。我们的模型发布在https://github.com/LiheYoung/Depth-Anything。
数据统计
相关导航
暂无评论...