Emu Video是一种基于扩散模型的简单文本到视频生成方法,将生成过程分解为两个步骤:首先根据文本提示生成图像,然后根据提示和生成的图像生成视频。分解生成方式能够高效训练高质量的视频生成模型。与以往的方法相比,我们的方法只需使用两个扩散模型即可生成分辨率为512像素、播放速度为每秒16帧、时长为4秒的视频。
数据统计
相关导航
Make-Your-Anchor
Make-Your-Anchor是一个基于扩散模型的2D虚拟形象生成框架。它只需一段1分钟左右的视频素材就可以自动生成具有精确上身和手部动作的主播风格视频。该系统采用了一种结构引导的扩散模型来将3D网格状态渲染成人物外观。通过两阶段训练策略,有效地将运动与特定外观相绑定。为了生成任意长度的时序视频,将frame-wise扩散模型的2D U-Net扩展到3D形式,并提出简单有效的批重叠时序去噪模块,从而突破推理时的视频长度限制。最后,引入了一种基于特定身份的面部增强模块,提高输出视频中面部区域的视觉质量。实验表明,该系统在视觉质量、时序一致性和身份保真度方面均优于现有技术。
暂无评论...