HAAR是一种基于文本输入的生成模型,可生成逼真的3D发型。它采用文本提示作为输入,生成准备用于各种计算机图形动画应用的3D发型资产。与当前基于AI的生成模型不同,HAAR利用3D发丝作为基础表示,通过2D视觉问答系统自动注释生成的合成发型模型。我们提出了一种基于文本引导的生成方法,使用条件扩散模型在潜在的发型UV空间生成引导发丝,并使用潜在的上采样过程重建含有数十万发丝的浓密发型,给定文本描述。生成的发型可以使用现成的计算机图形技术进行渲染。
数据统计
相关导航
Generative Powers of Ten
Generative Powers of Ten是一种利用文本到图像模型生成多尺度一致内容的方法,能够实现对场景的极端语义缩放,例如从森林的广角景观视图到树枝上昆虫的微距拍摄。这种表示方式使我们能够渲染连续缩放视频,或者交互式地探索场景的不同尺度。我们通过一种联合多尺度扩散采样方法实现这一点,该方法鼓励在不同尺度之间保持一致性,同时保留每个单独采样过程的完整性。由于每个生成的尺度都由不同的文本提示指导,我们的方法能够实现比传统的超分辨率方法更深层次的缩放,后者可能难以在完全不同的尺度上创建新的上下文结构。我们在图像超分辨率和外部绘制的替代技术上对我们的方法进行了定性比较,并表明我们的方法在生成一致的多尺度内容方面最为有效。
暂无评论...